Category Archives: Components

Using Location Information and GPS for finding your position

This tutorial introduces location services features available in App Inventor.

A future tutorial will demonstrate these features applied to specific applications.

About Android Device Location and GPS Features

Your Android device probably has built-in features to identify the device’s location. These features may include:

  • Global Positioning Satellite receiver (GPS)
  • Cellular network location information
  • Wi-Fi network location information

The GPS receiver interprets special (and very weak!) timing signals from satellites and uses those signals to compute latitude, longitude and altitude of your device. GPS has fairly good accuracy – correctly identifying the device’s position within as little as 5 meters (but which may at times be much wider such as within a 30 meter diameter circle accuracy). GPS accuracy is affected by the device’s ability to see the sky and may be blocked by buildings, trees and weather, and signals may suffer from ionospheric effects.

Cell phones can obtain information about the cellular network tower to which they are connected, including location information from the cellular tower.

Wi-Fi networks have a unique identifier associated with them (not the SSID public address). Google has built a map of wi-fi access point network locations using a combination of their Google mapping cars as well as everyone’s Android-powered cellular phone to build a huge database of wi-fi access points and their location. Your Android device can use a combination of location data and fetch a postal mailing address from Google for a given location.

Android phones have options as to which type of location information to use.

  • Cellular network information may be the least accurate, but it also uses the least amount of battery power.
  • Wi-fi network position information also uses little battery power, and can provide reasonably accurate location information when your phone is indoors and unable to hear signals from GPS satellites.
  • GPS provides the best accuracy but receiving and processing the signals uses the most battery power.

Your Android phone has options to select High accuracy, Battery saving and Device only.

  • High accuracy – Android will automatically select GPS, cellular or wi-fi to obtain a high accuracy position reading. This is likely the default setting on your phone.
  • Battery saving – Android will use cellular or Wi-fi networks to obtain position information.
  • Device only – Android will use the GPS receiver (greatest battery drain)

To select Location services, go to Settings | Location and set this feature to “On”.

Touch the item labeled “Mode” at the top of the screen to select “Location mode” options. This is where you may choose High accuracy, Battery saving or Device only.

Screenshot_20160516-175035To use any location features, you must turn Location to “On” in Android Settings!

MIT App Inventor has a component named LocationSensor providing access to latitude, longitude, altitude and even the postal mailing address associated with the location.

This tutorial introduces the LocationSensor and the basic properties and features. A future tutorial will go in to more depth.

Continue reading Using Location Information and GPS for finding your position

Aligning the text that appears in ListPicker

Readers post questions on the FB page or the blog. Sometimes I can answer them but sometimes I cannot answer them right away. For those that I cannot answer, I add the question to a list of future tutorial ideas. If someone is not sure how to solve a problem, chances are that there are others who may need help with the same issue!

I am beginning to go through my list – watch for more tutorials based on reader questions. Note – I do not have time to solve specific or custom applications. I try to abstract the basic elements of the problem and create a generic solution that can apply to a wide variety of use cases.

ListPicker Text Alignment

A reader asked how to align the text that appears in the ListPicker box. The ListPicker displays a set of items on screen so that the user may select an item from the list. When the list appears on screen, all the items are “left justified” which means they appear on the left side of the screen.

To demonstrate, our ListPicker, below, displays a list of auto manufacturers:

Screenshot_20160502-115325Is there a way to center or right justify the items that appear in the ListPicker list like this? The first 4 items in this list are right justified and the last two are centered:

Screenshot_20160502-114442The answer to that question is basically “yes”, but it may not be perfect – as we will see.

Continue reading Aligning the text that appears in ListPicker

Can you “gray out” a button until data entry is complete?

A reader asked  if it might be possible to “gray out” a button so that pressing it has no action, until appropriate data has been entered?

The answer is “Yes, we can do this.” After some thought, I came up with the following simple solution.

Update 1: Check the comments to this post for a reader’s great solution for doing this for Location services dependent function.

Update 2: Also, you can set the button component’s Enabled property to false, so that the button will not function. Then set Enabled to true once the data entry meets your app’s requirements.

User Interface

What we want to do is have the button look like it is “grayed out” and unusable until after some data is entered into the field. In the text box, I have set the  “hint” value to “Button available when data entered”:

Screenshot_20160317-202312After the user has entered some data, the button becomes “active” as shown here:

Screenshot_20160317-202334

Continue reading Can you “gray out” a button until data entry is complete?

A “switch board” user interface panel for App Inventor apps

In the last post, we introduced some concepts for building “creative” App Inventor user interfaces that feature visually appealing user interface controls rather than the usual bland buttons.

In this post, we look at creating an array of toggle switches. Tapping a switch flips the switch from left to right, or right to left.

Concepts

In developing this user interface, we learn two concepts:

  1. We expand on the previous post and its use of images to create custom buttons.
  2. We see how a user interface control can be stored in a list and referenced like a variable within our apps.

Source code:

The User Interface

I called my app “Mission Control” because any good mission control panel needs lots of switches!

The user interface features 9 toggle switches in a 3 x 3 array. The purpose of this app is to demonstrate how to implement this type of interface – the app does not otherwise do anything interesting.

Tapping any toggle switch causes the switch lever to move to the other side of the switch. Here is a screen shot showing some toggle switches to the left and some to the right.

Screenshot_20160204-140323The Designer View

Continue reading A “switch board” user interface panel for App Inventor apps

Making “pretty” App Inventor user interface controls

In the real world, “user interfaces” look like electric light switches, push buttons or control knobs, temperature dials on ovens, volume controls on radios and so forth. We can mimic these types of controls for our touch screen Android apps. We do not have to rely on the boring desktop-like clickable button or checkboxes in the App Inventor user interface palette.

A previous tutorial showed a trick to make the color of a button vary continuously. This tutorial shows how to use our own images, instead of the boring button, together with a bit of code to bring these buttons to life.

User Interface View

Below is a sample “toggle switch”. Press the switch icon once and the toggle moves to the right; press it again and the toggle moves back to the left.

toggleswitch1

toggleswitch2

Here is a slide switch. Press the slide switch once and the switch position moves to the right and the switch illuminates in green. Press the slide switch again and the switch returns to the left.

switch1

switch3

Here is a concept for a raised momentary push button. Pressing the button changes the appearance of the button while your finger is on the button – to look like the button is pressed in.

UI1

UI2

The Designer View

Continue reading Making “pretty” App Inventor user interface controls

What if your App Inventor apps had cooler user interface controls?

How about this – a panel full of toggle switches! Tap a switch to flip the switch from On to Off!

Screenshot_20160118-164605I will soon post a tutorial on creating simpler interfaces than the above, but that will be followed by a tutorial to create the above “panel of toggle switches”.

I have ideas for many interesting interface components – I do not yet know if all of them can be built in App Inventor – but we will see!

Scanning bar codes and QR Codes with App Inventor Apps

Overview

App Inventor supports scanning of product identification “bar codes” and QR codes. Bar codes are typically found on consumer product packaging. QR codes are used for web addresses (so you can scan the QR code and go directly to the web address), part and product inventory tracking, and to deliver short messages.

In this tutorial, we create a simple App Inventor app to scan bar and QR codes.

Update: José Luis Núñez provides his own tutorial (in Spanish) for a bar code scanning app to check seating in a theater (written in App Inventor). Watch it on Youtube here:  Curso de App Inventor 2 (José Luis Núñez)

User Interface

Our App Inventor app has a simple user interface – a single button to scan either a bar or QR code. When pressed, the app activates the camera to scan the code and then returns a result value.

If the code is a numeric bar code value, the app displays a web page of information about the item corresponding to the bar code. If the returned code contains a web address, then that web address is displayed on screen. Here is an example from scanning the UPC code on a package of tea:

Screenshot_20151130-134823In the next example, a QR code containing http://appinventor.mit.edu is scanned:

static_qr_code_without_logoAnd here is the result:

Screenshot_20151130-134746Designer View

Drag a WebViewer component from the Palette’s User Interface section, and drag a BarCodeScanner component from the Sensor’s section. The WebViewer is the “earth” icon in this screen, and the BarCodeScanner is an invisible component, below the canvas area.

BarCodeDesignerTwo labels are used – one to display the text “Result:” and the other to display the returned code.

BarCodeComponentsBlocks Code

To activate the BarCodeScanner, we call the DoScan method:

BarCodeBlocks1The above activates the camera and displays a view on screen (in Landscape mode). Once a bar code or QR code is successfully scanned, the camera is automatically turned off and an AfterScan event is generated.

The AfterScan event has one parameter named result; this contains the converted scan code – a numeric value for a bar code or an http:// URL for a web address (anything else is displayed in the lblBarCodeResult label, on screen).

BarCodeBlocks2Creating QR Codes

To create your own QR Code images use any of the QR code generators available online – just search for “Create QR Code free” – I used http://www.qrstuff.com/

Download Source

Right Click (or Ctrl-Click on Mac OS X) and choose “Save as” (or similar wording): BarCode_Scanner.aia

E-Books and Printed Books

If you find these tutorials helpful (I hope you do!) please take a look at my books on App Inventor. To learn more about the books and where to get them (they are inexpensive) please see my App Inventor Books page.

  • App Inventor 2 Introduction (Volume 1 e-book)
    Step-by-step guide to easy Android programming
  • App Inventor 2 Advanced Concepts (Volume 2 e-book)
    Step-by-step guide to Advanced features including TinyDB
  • App Inventor 2 Databases and Files (Volume 3 e-book)
    Step-by-step TinyDB, TinyWebDB, Fusion Tables and Files
  • App Inventor 2 Graphics, Animation and Charts (Volume 4 e-book and printed book)
    Step-by-step guide to graphics, animation and charts

Thank you for visiting! — Ed

 

MIT App Inventor “Extensions”

Some new “extension” features are available for testing in App Inventor at MIT App Inventor Extensions. The 4 extensions include vector addition, simple image processing, simple audio processing to identify the pitch of a sound, and the addition of multi-touch gestures to the Canvas.

I have not yet had time to try these but this is a sign of things to come as 3rd parties can begin to develop extensions to the core set of App Inventor features.

Look forward to trying these out! Click on the link above to take a look.

Free-Download App Inventor Text Files Cheat Sheet

Download here: App Inventor Basic Text Files Cheat Sheet (PDF)

High res, suitable for printing. Feel free to share with others.

App Inventor sample source code: TextFile.aia

Be sure to follow the links for more information about text files and where they are stored on your device and how to transfer files to your computer.

Here is a GIF image but use the PDF for printing:

Voila_Capture 2015-11-02_10-45-33_AM

E-Books and Printed Books

If you find these tutorials helpful (I hope you do!) please take a look at my books on App Inventor. To learn more about the books and where to get them (they are inexpensive) please see my App Inventor Books page.

  • App Inventor 2 Introduction (Volume 1 e-book)
    Step-by-step guide to easy Android programming
  • App Inventor 2 Advanced Concepts (Volume 2 e-book)
    Step-by-step guide to Advanced features including TinyDB
  • App Inventor 2 Databases and Files (Volume 3 e-book)
    Step-by-step TinyDB, TinyWebDB, Fusion Tables and Files
  • App Inventor 2 Graphics, Animation and Charts (Volume 4 e-book and printed book)
    Step-by-step guide to graphics, animation and charts

Thank you for visiting! — Ed

Free-Download App Inventor Location Sensor Cheat Sheet

Download here: App Inventor Location Sensor Cheat Sheet (PDF)

High res, suitable for printing. Feel free to share with others.

App Inventor sample source code: Location_WhereAmI.aia

Here is a GIF image but use the PDF for printing – also, where it says “enter a mailing address”, that should probably be “enter a street address”!

Voila_Capture 2015-10-28_12-21-17_PM

Post comments here or on our Facebook group page. Thank you!

E-Books and Printed Books

If you find these tutorials helpful (I hope you do!) please take a look at my books on App Inventor. To learn more about the books and where to get them (they are inexpensive) please see my App Inventor Books page.

  • App Inventor 2 Introduction (Volume 1 e-book)
    Step-by-step guide to easy Android programming
  • App Inventor 2 Advanced Concepts (Volume 2 e-book)
    Step-by-step guide to Advanced features including TinyDB
  • App Inventor 2 Databases and Files (Volume 3 e-book)
    Step-by-step TinyDB, TinyWebDB, Fusion Tables and Files
  • App Inventor 2 Graphics, Animation and Charts (Volume 4 e-book and printed book)
    Step-by-step guide to graphics, animation and charts

Thank you for visiting! — Ed